南宋数学家。他在公元1247年(淳佑七年)著成《数书九章》十八卷.全书共81道题,分为九大类:大衍类、天时类、田域类、测望类、赋役类、钱谷类、营建类、军旅类、市易类。这是一部划时代的巨著,它总结了前人在开方中所使用的列筹方法,将其整齐而有系统地应用到高次方程的有理或无理根的求解上去,其中对"大衍求一术"﹝一次同余组解法)和"正负开方术"﹝高次方程的数值解法)等有十分深入的研究。其中的"大衍求一术"﹝一次同余组解法),在世界数学史上占有崇高的地位。在古代《孙子算经》中载有"物不知数"这个问题,举例说明:有一数,三三数之余二,五五数之余二,七七数之余二,问此数为何?这一类问题的解法可以推广成解一次同余式组的一般方法.秦九韶给出了理论上的证明,并将它定名为"大衍求一术"。